Tracking retinal motion with a scanning laser ophthalmoscope.
نویسندگان
چکیده
The vast majority of people with low vision retain some functional vision to perform everyday tasks. To study the effectiveness and efficiency of the visual tasks performed by people with low vision, knowing the movement patterns of their preferred retinal locus (PRL) used for fixation, saccade, and pursuit is critical. The scanning laser ophthalmoscope (SLO) has been used to acquire retinal images while a subject is performing a visual tracking exercise. SLO data has traditionally been analyzed with the use of manual techniques that are both time-consuming and prone to errors due to operator fatigue. To improve the speed and accuracy of the analysis of retinal motion from SLO image sequences, we developed an automated image processing technique and tested it using MATLAB(TM) (The MathWorks, Natick, MA) software. The new software technique was experimentally tested on both normal- and low-vision subjects and compared with the results obtained using manual techniques. The findings indicate that the new technique works very well for most subjects, fairing poorly only in subjects where the quality of the SLO images was substandard.
منابع مشابه
Adaptive optics scanning laser ophthalmoscope for stabilized retinal imaging.
A retinal imaging instrument that integrates adaptive optics (AO), scanning laser ophthalmoscopy (SLO), and retinal tracking components was built and tested. The system uses a Hartmann-Shack wave-front sensor (HS-WS) and MEMS-based deformable mirror (DM) for AO-correction of high-resolution, confocal SLO images. The system includes a wide-field line-scanning laser ophthalmoscope for easy orient...
متن کاملTracking adaptive optics scanning laser ophthalmoscope
Active image stabilization for an adaptive optics scanning laser ophthalmoscope (AOSLO) was developed and tested in human subjects. The tracking device, a high speed, closed-loop optical servo which uses retinal features as tracking target, is separate from AOSLO optical path. The tracking system and AOSLO beams are combined via a dichroic beam splitter in front of the eye. The primary tracking...
متن کاملBinocular eye tracking with the Tracking Scanning Laser Ophthalmoscope
The development of high magnification retinal imaging has brought with it the ability to track eye motion with a precision of less than an arc minute. Previously these systems have provided only monocular records. Here we describe a modification to the Tracking Scanning Laser Ophthalmoscope (Sheehy et al., 2012) that splits the optical path in a way that slows the left and right retinas to be s...
متن کاملTracking scanning laser ophthalmoscope (TSLO)
The effectiveness of image stabilization with a retinal tracker in a multi-function, compact scanning laser ophthalmoscope (TSLO) was demonstrated in initial human subject tests. The retinal tracking system uses a confocal reflectometer with a closed loop optical servo system to lock onto features in the fundus. The system is modular to allow configuration for many research and clinical applica...
متن کاملHigh-speed, image-based eye tracking with a scanning laser ophthalmoscope
We demonstrate a high-speed, image-based tracking scanning laser ophthalmoscope (TSLO) that can provide high fidelity structural images, real-time eye tracking and targeted stimulus delivery. The system was designed for diffraction-limited performance over an 8° field of view (FOV) and operates with a flexible field of view of 1°-5.5°. Stabilized videos of the retina were generated showing an a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of rehabilitation research and development
دوره 42 3 شماره
صفحات -
تاریخ انتشار 2005